
Topological defects in spinor condensates

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 8555

(http://iopscience.iop.org/0305-4470/36/32/302)

Download details:

IP Address: 171.66.16.86

The article was downloaded on 02/06/2010 at 16:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/32
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 8555–8564 PII: S0305-4470(03)63294-4

Topological defects in spinor condensates
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Abstract
We investigate the structure of topological defects in the ground states of spinor
Bose–Einstein condensates with spin F = 1 or F = 2. The type and number
of defects are determined by calculating the first and second homotopy groups
of the order-parameter space. The order-parameter space is identified with a
set of degenerate ground state spinors. Because the structure of the ground
state depends on whether or not there is an external magnetic field applied to
the system, defects are sensitive to the magnetic field. We study both cases and
find that the defects in zero and non-zero field are different.

PACS numbers: 03.75.Fi, 67.40.Yv

1. Introduction

Bose–Einstein condensates (BECs) of alkali atoms have an internal degree of freedom due
to the hyperfine spin of these atoms. If a BEC is realized in a magnetic trap this degree of
freedom is frozen and in a mean-field limit the condensate is described by a scalar order-
parameter. However, if an optical trap [1] is used to confine condensate atoms, this degree
of freedom is liberated and has to be taken into account [2, 3]. Condensates with this
property are called spinor or vector condensates. In the mean-field theory the ground state
of a spinor condensate is described by an order-parameter �(r) = √

n(r)ξ(r), where n(r)
is the density of the condensate and ξ(r) is a normalized spinor, ξ †(r)ξ(r) = 1. In this
paper, the density n is assumed to be constant. Because of the vectorial nature of the order-
parameter, the behaviour of spinor condensates is in many ways different from that of scalar
condensates. One manifestation of this can be seen in the difference of defects in scalar and
spinor condensates. In the former vortices with integer winding numbers can exist. The latter
allow for more complex defects, which are the topic of this paper. Our study is based on
the ground states calculated using the mean-field theory and single condensate approximation
[2, 7–9]. Mean-field theory is widely used in the study of Bose–Einstein condensates and
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it is usually assumed to give a good description of the physical system. However, some
results suggest that the actual ground states of spinor condensates may be different from those
obtained using mean-field theory [18, 19]. Thus, the results of this paper are valid only as
long as mean-field theory can be applied.

2. Characterization of the used techniques

2.1. The order-parameter space

In condensed matter systems the concept of an order-parameter is very important [4, 5].
Order-parameter f (r) is a continuous mapping from some region of the physical space into
the order-parameter space M, which consists of all possible values of the order-parameter. It
is usually possible to associate the order-parameter space with a group G that acts on that
space. If this action is transitive (i.e., for every x, x ′ ∈ M there exists some g ∈ G for which
x ′ = g · x), we can arbitrarily choose some element xref ∈ M which we call the reference
order-parameter. Every element x ∈ M can then be obtained from xref by acting on it by
a suitable element of the group G. Those elements of G which leave xref fixed constitute a
subgroup H called the isotropy group. Explicitly H = {g ∈ G|g · xref = xref}. Under some
rather general requirements for G and M the order-parameter space M can be identified with
the quotient space G/H . When considering the defects of spin-F Bose–Einstein condensate
the order-parameter is the normalized (2F + 1)-component spinor ξ(r) ∈ C

2F+1. Because we
study what kind of defects can exist in the ground state of the system, the order-parameter
space is the set of spinors that minimize the energy. In the absence of an external magnetic
field we can often choose G = U(1) × SO(3). However, this choice is not always the correct
one, as there may be order-parameter spaces in which U(1)×SO(3) does not act transitively;
see below. U(1) × SO(3) acts on C

2F+1 via equation ((c, R), ξ) �→ cD(F)(R)ξ, where
(c, R) ∈ U(1) × SO(3) and D(F) is the (2F + 1)-dimensional irreducible representation
of SO(3). This representation is given by the map R(α, β, γ ) �→ D(S)(α, β, γ ), where
R(α, β, γ ) = Rz(α)Ry(β)Rz(γ ) ∈ SO(3) is given as a product of rotations about y- and
z-axes and D(S)(α, β, γ ) = exp(−iαFz) exp(−iβFy) exp(−iγFz). Here Fy and Fz are y-
and z-components of the spin matrices corresponding to spin F. Representation matrices for
F = 1 and F = 2 are given in the appendix.

In the presence of an external magnetic field the energy of the ground state is invariant
under gauge transformations and rotations about the axis of the magnetic field, so we choose
G = U(1) × SO(2).

2.2. Homotopy groups

Homotopy groups of the order-parameter space describe physical defects [4]. The nth
homotopy group πn(M) of the space M consists of the equivalence classes of continuous
maps from n-dimensional sphere Sn to the space M. Two maps are equivalent if they are
homotopic to one another. In physics, the first and second homotopy groups are of special
importance. The first homotopy group π1(M) describes singular line defects and domain
walls, which are non-singular defects. The second homotopy group π2(M) describes singular
point defects and non-singular line defects. Thus, identifying M with G/H , we can learn
much from the possible defects in a physical system if we know π1(G/H) and π2(G/H).
These can be calculated with the help of the following theorem.
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Table 1. The reference spinors and their general forms for F = 1 spinor condensate when the
external magnetic field is zero.

ξT
ref ξ(α, β, γ, θ)T

f (1, 0, 0) ei(θ−γ )
(

e−iα cos2 β
2 , 1√

2
sin β, eiα sin2 β

2

)
af (0, 1, 0) eiθ

(
−e−iα 1√

2
sin β, cos β, eiα 1√

2
sin β

)

Theorem 1. Let G be a Lie group with π0(G) = π1(G) = π2(G) = 0. Here 0 denotes a
one-element group. Let H ⊆ G be a closed subgroup, and H0 ⊆ H the connected component
of the identity. There are isomorphisms

π1(G/H) ∼= H/H0 (1)

and

π2(G/H) ∼= π1(H0). (2)

For a proof, see [4] or [15].
We cannot use this theorem if G is U(1)×SO(3), because π1(U(1)×SO(3)) = Z×Z2.

This problem can be solved by using R × SU(2) instead of U(1) × SO(3), since this group
fulfils the requirements of the theorem. The former is a covering group of the latter, the
covering projection P : R × SU(2) → U(1) × SO(3) being given by (x,U(α, β, γ )) �→
(eix, R(α, β, γ )), where x ∈ R and

U(α, β, γ ) =
(

cos β

2 e−i(α+γ )/2 −sin β

2 ei(γ−α)/2

sin β

2 e−i(γ−α)/2 cos β

2 ei(α+γ )/2

)
∈ SU(2) (3)

Every matrix in SU(2) can be written in this form. Sufficient intervals for α, β and γ are
[0, 2π ], [0, π ] and [0, 4π ], respectively.

3. Spin 1

The ground state structure for F = 1 condensate was calculated by Ho [2] and by Ohmi
and Machida [3]. If the external magnetic field is non-zero the spin-dependent part in the
energy is E(ξ) = c〈F〉2

ξ − p〈Fz〉ξ + q
〈
F 2

z

〉
ξ

[11]. Here the kinetic energy term is neglected in

the Thomas–Fermi approximation and 〈F〉ξ = ξ †Fξ . The constant c depends on scattering
lengths and the density n, whereas p describes linear and q quadratic Zeeman interaction with
the external magnetic field. The external field is assumed to be directed along the z-axis.

3.1. Zero external field

The equation for energy is obtained by setting p = q = 0. Depending on the sign of c energy is
minimized either by 〈F〉2

ξ = 1 or 〈F〉ξ = 0. The former is called the ferromagnetic (f ) and the
latter the antiferromagnetic (af ) phase. The order-parameter spaces corresponding to these
phases are Mf = {

ξ ∈ C
3|〈F〉2

ξ = 1, ξ †ξ = 1
}

and Maf = {ξ ∈ C
3|〈F〉ξ = 0, ξ †ξ = 1}. It is

easy to see that U(1) × SO(3) acts transitively on these sets. The reference order-parameters
and general order-parameters obtained from these by a rotation and gauge transformation are
shown in table 1.
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3.1.1. Ferromagnetic phase. From table 1 we see that we do not need the angle θ because γ

can produce all possible gauge transformations. This means that instead of R×SU(2) we can
use only SU(2). To find the elements of the isotropy group Hf we set ξf (α, β, γ, 0) = ξ

f

ref .
This gives Hf = {I,−I}. Using theorem 1 we get π1(G/Hf ) ∼= {±I} and π2(G/Hf ) ∼= 0.
The order-parameter space is SU(2)/{±I} ∼= SO(3). This order-parameter space has also
been encountered in 3He–A [12].

Physically, these results mean that we can have one non-trivial singular vortex but we
cannot have any non-trivial monopoles, i.e. singular point defects. The non-trivial vortex is a
defect in which the overall phase of the spinor changes by 2π as the defect line is encircled.

3.1.2. Antiferromagnetic phase. Now the isotropy group is Haf = {
(n2π, a(ϕ)),

((
n +

1
2

)
2π, ga(ϕ)

)∣∣ϕ ∈ [0, 4π ], n ∈ Z
}
, where we have defined a(ϕ) = U(ϕ, 0, 0) and

g = U(0, π, 0). The connected component of the identity is H
af

0 = {(0, a(ϕ)) | ϕ ∈ [0, 4π ]}.
We get π1(G/Haf ) ∼= {

(n2π, I)H
af

0 ,
((

n + 1
2

)
2π, g

)
H

af

0

∣∣n ∈ Z
}
. This group is isomorphic

to Z, the isomorphism being given by the map ((2n + j)π, gj )H
af

0 �→ 2n + j , where j = 0
or 1 and g0 ≡ I. Thus π1(G/Haf ) ∼= Z. Previously, the order-parameter space and first
homotopy group were concluded to be U(1) × S2 and Z [2] or [U(1) × S2]/Z2 and Z × Z2

[6]. Both of these order-parameter spaces are incorrect but the first homotopy group in [2] is
correct. However, that of [6] is not correct, since there is no (group) isomorphism between
Z and Z × Z2. The isotropy group (in U(1) × SO(3)) is isomorphic to O(2), but it cannot
be expressed as a direct product of a subgroup of U(1) and SO(3). Thus the order-parameter
space can be written only as G/H = [U(1) × SO(3)]/O(2)G+S , where G + S means that
the isotropy group consists of gauge transformations performed simultaneously with spin
rotations.

Because H
af

0 is homeomorphic to U(1) and homeomorphic spaces have the same
homotopy groups, we get π2(G/Haf ) ∼= π2(U(1)) ∼= Z. If we move around a closed path in
the condensate we note that when we return to the starting point the angle θ has changed by
some amount. If we define the change in this angle divided by 2π to be the winding number,
we see from the elements of Haf

/
H

af

0 that the winding number can be either an integer (n) or
a half-integer

(
1
2 + n

)
[10]. Paths in the order-parameter space can be represented pictorially

as follows. From table 1 we see that we have three parameters in the general expression for the
ferromagnetic state. From these α and β can be restricted to the intervals [0, 2π ] and [0, π ],
respectively, and θ ∈ [0, 2π ]. However, because ξaf (α ±π, π −β, γ, θ) = −ξaf (α, β, γ, θ),
we can actually restrict θ to the interval [0, π ]. These parameters can be represented using
cylindrical coordinates (α, r, z), where now r = β, z = θ , see figure 1.

In summary, possible line defects are those in which the overall phase changes by 2πn as
the defect line is encircled and those in which a phase change of π + 2πn is accompanied by
a 180◦ spinor rotation. Also point defects, labelled by integers, are possible.

3.2. Non-zero external field

Straightforward minimization of energy gives four ground states which are degenerate with
respect to one or two phase variables, see table 2. The identification of the order-parameter
space G/H is easier than in the absence of the magnetic field.

In f1, f2 and af states G = U(1) and H = 1, so G/H = U(1) for which π1(U(1)) ∼= Z

and π2(U(1)) ∼= 0. Thus, we can have singular vortices with arbitrary integer winding
numbers but we do not have singular point defects. This resembles the situation in a scalar
condensate, where we have similar defects.
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θ

B

A

α

π π00

(a) (b)

B

A

Figure 1. Pictorial representation of the parameters of the antiferromagnetic spinor. Angles α and
θ are shown in the picture and angle β is the length of the vector. On the boundary points (α, β, 0)

and (α ± π, π − β, π) correspond to the same value of the order-parameter. This is also true for
all points for which β = π , θ is fixed and α ∈ [0, 2π). A (B) denotes the starting (ending) point
of the curve. We assume ξ(A) = ξ(B), so the curves define closed curves in the order-parameter
space. Defining the direction of increasing θ to be positive, we see in (a) a path with winding
number 1

2 and in (b) a path with winding number −1.

Table 2. The ground states for F = 1 spinor condensate when the external magnetic field is
non-zero. States are degenerate with respect to angles θ and φ. We have assumed that c �= 0.
f3 evolves to f1 (f2) state as p reaches 2c (−2c).

ξT
ref E(ξ)

f1 eiθ (1, 0, 0) c − p + q

f2 eiθ (0, 0, 1) c + p + q

f3

(
eiθ

√
1
2 + p

4c
, 0, eiφ

√
1
2 − p

4c

)
− p2

4c
+ q

af eiθ (0, 1, 0) 0

In the f3 state G/H = U(1) × U(1) for which π1(U(1) × U(1)) ∼= Z × Z and
π2(U(1) × U(1)) ∼= 0. Now we can have independent vortices in the m = 1 and m = −1
components of the spinor.

4. Spin 2

The ground states for F = 2 spinor condensate were calculated by Ciobanu et al [7] and Ueda
and Koashi [8]. In the Thomas–Fermi approximation the spin-dependent energy is given by
E(ξ) = c〈F〉2

ξ + d|
ξ |2 −p〈Fz〉ξ , where c and d are constants depending on scattering lengths
and p describes the linear Zeeman effect. The possible ground states are characterized by two
parameters, namely ‖〈F〉ξ‖ = (〈F〉2

ξ

)1/2
and |
ξ | = ∣∣2ξ2ξ−2 − 2ξ1ξ−1 + ξ 2

0

∣∣.
4.1. Zero external field

The energy in zero magnetic field is obtained by setting p = 0. Because 〈F〉2
ξ and |
ξ | are

invariant under the action of U(1) × SO(3), and for each ξ there exists a rotation R for which
〈F〉2

ξ = 〈Fz〉2
D(R)ξ , we can write the energy in the form E(ξ) = c〈Fz〉2

ξ + d|
ξ |2. This equation
has been solved in [7, 8]. It turns out that there are three possible phases in the system,
ferromagnetic (F, F ′), cyclic (C) and polar (P ).

To express the order-parameter spaces we define M(i, j) = {ξ ∈ C
5|‖〈F〉ξ‖ = i, |θξ | =

j, ξ †ξ = 1}. Then in F phase the order-parameter space is M(2, 0), in F ′ phase M(1, 0),
in C phase M(0, 0) and in P phase M(0, 1). Representative spinors from these sets and
their energies are shown in table 3. It turns out that U(1) × SO(3) acts transitively on the
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Table 3. Ground state spinors and their energies of F = 2 condensate when the external magnetic
field is absent. General forms of the ground states can be obtained from these by a rotation and
a gauge transformation. Note that in the P state we have two free parameters. These are needed
because we cannot obtain every possible spinor representing the polar state from a fixed reference
spinor by a rotation and a gauge transformation.

ξT E

F (1, 0, 0, 0, 0) 4c

F ′ (0, 1, 0, 0, 0) c

C 1
2 (1, 0,

√
2, 0, −1) 0

P 1√
2
(sin φ sin ψ, sin φ cos ψ,

√
2 cos φ,−sin φ cos ψ, sin φ sin ψ) d

parameter spaces of the ferromagnetic and cyclic phases. However, this is not true for the
order-parameter space of the polar phase. For example, if we first choose φ = 0 and then
φ = π

2 , ψ = 0 in the spinor representing a polar state, we get two spinors which cannot be
converted to each other by a rotation and gauge transformation. This means U(1) × SO(3) is
not a group large enough in the case of polar phase.

4.1.1. Ferromagnetic phases. There are two possible ferromagnetic phases, labelled by F
and F ′. As in F = 1 case, in both of these phases we can use SU(2) instead of R × SU(2).

In F phase HF = HF
/
HF

0 = {I, (−iσz), (−iσz)
2, (−iσz)

3} and thus π1(G/HF ) ∼= Z4,

π2(G/HF ) ∼= 0. Here σz is the z-component of Pauli matrices and −iσz describes rotation
about the z-axis through 180◦. Non-trivial vortices are those in which the reference spinor
rotates through 180◦, 360◦ or 540◦ about the z-axis when the defect line is circulated. In
SO(3) the isotropy group is {±I}, so G/H = SO(3)/Z2. For a pictorial representation of
paths in SO(3)/Z2 see [13].

In F ′ phase the order-parameter space is SO(3), and defects are similar to those in the
ferromagnetic phase of spin-1 condensate.

4.1.2. Cyclic phase. In C phase we meet an example of a non-commuting first homotopy
group. A rotation and a gauge transformation of the reference spinor give

ξC = 1

2
eiθ




e−2iα
(
cos4 β

2 e−i2γ +
√

3
2 sin2 β − sin4 β

2 ei2γ
)

e−iα sin β
(
cos2 β

2 e−i2γ −
√

3
2 sin 2β + sin2 β

2 ei2γ
)

−i
√

6
2 sin2 β sin 2γ +

√
2

4 (1 + 3 cos 2β)

eiα sin β
(
sin2 β

2 e−i2γ +
√

3
2 sin 2β + cos2 β

2 ei2γ
)

e2iα
(
sin4 β

2 e−i2γ +
√

3
2 sin2 β − cos4 β

2 ei2γ
)




.

Equating this with 1
2 (1, 0,

√
2, 0,−1)T yields the elements of the isotropy group. HC turns

out to be a discrete, non-commuting group. Explicitly HC is the union of the conjugacy
classes shown below. The isotropy group (in U(1) × SO(3)) is isomorphic to the tetrahedral
group, which is the symmetry group of a tetrahedron. HC is a discrete group and thus
π1(G/HC) = HC . Because HC is a non-commuting group we have to use the conjugacy
classes of π1(G/HC) to classify the topologically inequivalent defects [4]. Two line defects
are topologically equivalent if and only if they are characterized by the same conjugacy class
of the first homotopy group. Defects can still be labelled by the elements of the first homotopy
group, but if these elements belong to the same conjugacy class, corresponding defects can



Topological defects in spinor condensates 8561

Table 4. The multiplication table of the conjugacy classes of C phase. Because the class
multiplication is commutative only half of that is shown. Winding numbers have been omitted for
clarity. When two classes are multiplied the winding number of the resulting class is the sum of
the individual winding numbers.

C0 C2 C3 C3 C2
3 C2

3

C0 C0

C2 C2 6C0 + 6C0 + 4C2

C3 C3 3(C3 + C3) 3C2
3 + C2

3

C3 C3 3(C3 + C3) C2
3 + 3C2

3 3C2
3 + C2

3

C2
3 C2

3 3
(
C2

3 + C2
3

)
4C0 + 2C2 4C0 + 2C2 3C3 + C3

C2
3 C2

3 3
(
C2

3 + C2
3

)
4C0 + 2C2 4C0 + 2C2 C3 + 3C3 3C3 + C3

be continuously transformed to one another. However, if they belong to different conjugacy
classes this is not possible. The conjugacy classes are

C0(n) = {(n, I)}, C0(n) = {(n,−I)}
C2(n) = {(n, a), (n,−a), (n, b), (n,−b), (n, c), (n,−c)}
C3

(
1
3 + n

) = {(
1
3 + n, d

)
,
(

1
3 + n, e

)
,
(

1
3 + n, f

)
,
(

1
3 + n, g

)}
C3

(
1
3 + n

) = {(
1
3 + n,−d

)
,
(

1
3 + n,−e

)
,
(

1
3 + n,−f

)
,
(

1
3 + n,−g

)}
(4)

C2
3

(
2
3 + n

) = {(
2
3 + n, d2), ( 2

3 + n, e2), ( 2
3 + n, f 2), ( 2

3 + n, g2)}
C2

3

(
2
3 + n

) = {(
2
3 + n,−d2

)
,
(

2
3 + n,−e2

)
,
(

2
3 + n,−f 2

)
,
(

2
3 + n,−g2

)}
.

Here n ∈ Z, a = U(π, 0, 0), b = U
(
0, π, π

2

)
, c = U

(
0, π, 3π

2

)
, d = U

(
π
4 , π

2 , π
4

)
, e =

U
(

π
4 , π

2 , 13π
4

)
, f = U

(
13π

4 , π
2 , π

4

)
, g = U

(
5π
4 , π

2 , 13π
4

)
and a2 = b2 = c2 = d3 = e3 =

f 3 = g3 = −I. We have also divided the real number part of each group element by 2π .
The class C0(n) describes defects in which the phase of the spinor is changed by 2πn as
the defect line is encircled. Note that only C0(0) corresponds to trivial defects. In the case
of C0(n) phase change of 2πn is accompanied by a 360◦ rotation about z-axis. For the
rest of the conjugacy classes an explicit description of the defects is more complicated. For
example, the element (n, a) in the class C2(n) depicts a defect in which the spinor rotates
through 180◦ about the z-axis and changes phase by 2πn as the line is encircled. Similarly
(n, b) ∈ C2(n) describes rotations first through 90◦ about the z-axis and then through 180◦

about the y-axis together with 2πn phase change. However, because these defects belong to
the same conjugacy class they can be continuously transformed into one another.

The multiplication table of conjugacy classes is shown in table 4. It shows that, for
example, when we combine defect C2(n) with C2(−n) they can either annihilate each other
(C0(0)) or form defect C0(0) or C2(0), the result depending on how they are brought together.

Defects can be classified further using homology groups [16, 17]. In the presence of
other line singularities it may be possible to transform two line defects described by different
conjugacy classes into one another. This is achieved by splitting a defect into two parts and
combining these beyond a suitable line defect. Elements of π1(M) can be grouped into sets
in such a way that defects described by elements in the same set can be deformed into one
another either continuously or in the previously described way. The collection of these sets
forms a factor group π1(M)/D, where D is an invariant subgroup of π1(M) generated by
elements δτδ−1τ−1 with δ, τ ∈ π1(M). The elements of π1(M)/D are unions of conjugacy
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Table 5. General forms of the ground state spinors of F = 2 condensate in the presence of an
external magnetic field. Energy is degenerate with respect to angles θ and φ.

ξT E

F1 eiθ (1, 0, 0, 0, 0) 4c − 2p

F2 eiθ (0, 0, 0, 0, 1) 4c + 2p

F ′
1 eiθ (0, 1, 0, 0, 0) c − p

F ′
2 eiθ (0, 0, 0, 1, 0) c + p

C 1
2

(
eiθ (1 + p

4c
), 0, eiφ

√
2 − p2

8c2 , 0, e−i(θ−2φ)(−1 + p
4c

)
)

− p2

4c

P 1√
2

(
eiθ

√
1 + p

4c−d
, 0, 0, 0, eiφ

√
1 − p

4c−d

)
d − p2

4c−d

P1
1√
2

(
0, eiθ

√
1 + p

2(c−d)
, 0, eiφ

√
1 − p

2(c−d)
, 0

)
d − p2

4(c−d)

P0 eiθ (0, 0, 1, 0, 0) d

classes. In our case D is the union of the conjugacy classes with winding number zero,
D = C0(0) ∪ C0(0) ∪ C2(0), and

π1(G/HC)/D = {
C0 ∪ C0 ∪ C2, C3 ∪ C3, C

2
3 ∪ C2

3

}
. (5)

Here we have omitted winding numbers, which are n, 1/3 + n and 2/3 + n, respectively. We
see that line defects with the same winding number can be deformed to one another either
continuously or using a splitting and recombination process.

From the work of Poenaru and Toulouse [14] we know that when two line defects
(described by δ, τ ∈ π1(M)) cross each other they produce a new line defect connecting
them. This defect is of the type δτδ−1τ−1. Clearly, if δτδ−1τ 1 = 1, line defects can pass
through each other without the creation of a new singular defect. In our case defects that can
be created by making two line defects cross are the trivial defect C0(0) and two non-trivial
defects, namely C0(0) and C2(0).

4.2. Non-zero external field

Ground states were calculated in [7, 8] and are shown in table 5. However, now it should be
noted that in the cyclic phase the order-parameter space has a quite complicated structure [8].
Group U(1) × SO(2) can act transitively on this order-parameter space only if the external
field is strong enough, and even then there may be states which are degenerate in energy but
which cannot be obtained from the reference order-parameter shown in table 5 [8].

In the ferromagnetic phases and in the P0 phase G/H = U(1) and the first and second
homotopy groups are Z and 0. In C,P and P1 phases G/H = U(1)×U(1) and the homotopy
groups are Z × Z and 0. Physically this means that we can have a vortex in each component
of a spinor but only two of them can have independent winding numbers. In the C phase, if
there are vortices with winding numbers m and n say, in the first and third components of the
spinor, then there must also be a vortex in the fifth component of the spinor. However, its
winding number is not free but equal to 2n − m.

5. Discussions

In this paper, we have calculated the first and second homotopy groups of the order-parameter
spaces of spinor condensates with F = 1 and F = 2. The elements of these groups correspond
to topologically stable singular line and point defects. The order-parameter space is identified
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with the set of degenerate ground state spinors, and both non-zero and zero external magnetic
field cases are discussed.

In F = 1 condensate there are two possible phases, ferromagnetic and antiferromagnetic.
If external field is zero in the former there can be one topologically non-trivial line defect but
no topologically non-trivial point defects. In the latter infinitely many line and point defects,
labelled by integers, are possible.

In F = 2 condensate three different phases, ferromagnetic, polar and cyclic are possible.
The ferromagnetic phase can be further divided into two phases labelled by ‖〈F〉ξ‖ = 1 or 2.
In zero field the former has similar defects to the ferromagnetic phase of F = 1 condensate
and in the latter there can be three topologically non-trivial line defects but point defects are
not stable.

In the absence of an external field the order-parameter space of the cyclic phase has
a non-commuting first homotopy group. Topologically stable defects are classified by the
conjugacy classes of this group and are those in which the spinor is suitably rotated and its
phase changed by an integer multiple of π/3 as the defect line is encircled. Stable point
defects are not possible. If an external magnetic field is applied the symmetry is reduced and
non-commutativity of the first homotopy group is lost. It also turns out that in the zero field
U(1) × SO(3) does not act transitively on the order-parameter space of the polar phase and
thus the defect structure remains unsolved.

For F = 1 and F = 2 condensates, if the external field is non-zero and there is only
one non-zero component in the spinor, a vortex with an arbitrary integer winding number is
possible. If there are two or three non-zero components then a vortex in each component of
the spinor is possible, but only two of these can have an independent winding number. In the
presence of a magnetic field stable point defects cannot exist.
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Appendix

The 3 × 3 representation matrix corresponding to U(α, β, γ ) is

D(1)(α, β, γ ) =




e−i(α+γ ) cos2 β

2 −e−iα 1√
2

sin β e−i(α−γ ) sin2 β

2

e−iγ 1√
2

sin β cos β −eiγ 1√
2

sin β

ei(α−γ ) sin2 β

2 eiα 1√
2

sin β ei(α+γ ) cos2 β

2


 . (A.1)

The five-dimensional representation matrix is given by D(2)(α, β, γ ) =
exp(−iαFz) exp(−iβFy) exp(−iγFz), where exp(−iαFz) = diag(e−i2α, e−iα, 1, eiα, ei2α) and

exp(−iβFy)

=




cos4 β

2 −sin β cos2 β

2

√
6

4 sin2 β −sin β sin2 β

2 sin4 β

2

sin β cos2 β

2
1
2 (cos β + cos 2β) −

√
6

4 sin 2β 1
2 (cos β − cos 2β) −sin β sin2 β

2√
6

4 sin2 β
√

6
4 sin 2β 1

4 (1 + 3 cos 2β) −
√

6
4 sin 2β

√
6

4 sin2 β

sin β sin2 β

2
1
2 (cos β − cos 2β)

√
6

4 sin 2β 1
2 (cos β + cos 2β) −sin β cos2 β

2

sin4 β

2 sin β sin2 β

2

√
6

4 sin2 β sin β cos2 β

2 cos4 β

2




.

(A.2)
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